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1. Introduction/Abstract 
The goal of my individual research at DCP is to establish a system for distributing 

machine/deep learning tasks on the platform, with a focus on developing a program to train 
convolutional neural networks on the platform for image/video processing. As datasets and 
machine learning models increase in size and complexity, access to computing power to train 
these models becomes vital. In theory, the ability to use DCP’s platform for machine learning 
would drastically reduce the amount of computing time for training. The decision to research 
CNNs and image processing was because of its relevance in the field of machine learning, and 
a general framework could be constructed based off CNN training to accommodate for many 
classes of neural networks First, a fundamental understanding of how CNNs work on a low level 
must be established. This will allow me to reconstruct a neural network in javascript and be able 
to optimize it for DCL. Then, research must be done on previous methods to distribute or 
parallelize algorithms for deep learning. Finally, testing will be used to determine if the 
implementation of the program in DCL will speed up the training of models.  

2. Convolutional Neural Networks 
CNNs, or ConvNets, are one of the most relevant and applicable classes of deep 

learning neural networks used today, and are suitable for image processing and classification. It 
takes in images as inputs, and assigns biases and weights to image features in order to 
differentiate them. As mentioned by Sumit Saha: “The role of the ConvNet is to reduce the 
images into a form which is easier to process, without losing features which are critical for 
getting a good prediction”.  

Figure 1: Simple Neural Network 
 

 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6


 

 

2.1 Forward Propagation 
A neural network at a low level takes the values from input neurons, or nodes, and sends 

them through a network of hidden nodes by applying functions to them, until they reach the final 
output layer. The functions also include individual weights and biases that will be updated to 
improve the accuracy of the model. These are also known as kernels. Fundamentally, 
convolutional neural networks operate in the same manner. The image is sent through multiple 
filters and fully connected networks until output predictions can be made. The first step in 
training a CNN is to initialize random weight and bias values to each filter. The image will then 
be split up into three color channels and sent through the feature extraction part of the network. 
Feature extraction consists of multiple layers, including convolution, ReLU, and pooling. The 
convolution and ReLU layers apply filters to the image to create a filter map and replace 
negative values with zero. Pooling reduces the dimensionality of the filter map while retaining 
the most important information.  

After multiple iterations of these layers are applied, the data gets sent through a fully 
connected network, simplified by Figure 1. At the last layer, output predictions are determined 
for each class (i.e dog, cat, tree). For example, let’s say the image was a tree. Then, the target 
values would be (0,0,1). Possible output values could be (0.2, 0.4, 0.4). This data will then be 
used in backpropagation to adjust the biases and weights in order to achieve a more accurate 
result.  

2.2 Backpropagation 
Using the output predictions generated in the forward propagation phase of the network, 

the filter weights and biases will be adjusted in an attempt to improve the accuracy of the model. 
First, the error of the output predictions with respect to the target values must be calculated. 
Ujjwal Karn states the error can be calculated using the following equation: 

otal Error ∑  ½ (target probability – output probability) ²T =   
The total error can be used to calculate the Gradient with respect to each weight. Gradient 
Descent is then used to update the filter weights and biases to improve the model for future 
inputs. Gradient Descent represents the loss function of the algorithm, and the goal is to 
minimize this. 

2.2.1 Stochastic Gradient Descent  
According to a paper by Hedge and Usmani (2016), one of the most computationally 

expensive steps of training a neural network is computing the gradient of loss for the images in 
the data-set with respect to all the parameters in the model. They claim that this is why it is 
necessary to use stochastic gradient descent. As noted in the paper, this method is used for 
every subset of the database until all images have been used up, also known as an epoch. 
Previous methods to parallelize and distribute SGD will be evaluated later on.  

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://web.stanford.edu/~rezab/classes/cme323/S16/projects_reports/hedge_usmani.pdf


 

 
Figure 2: My illustration of a low level convolutional neural network and how to train one 

3. Parallel and Distributed Methods 
There are many different ways to approach distributed and parallelized computing. The 

first includes local training. Recent development in deep learning optimization, such as 
multi-core processing and GPU computation has drastically improved the computation time of 
training models. Methods for distributing work in this fashion will be looked into to determine if it 
can be expanded to seperate computers. The problem with some methods for local training is 
that they assume frequent communication can be established. The way DCP operates, small 
tasks should be given to workers with sufficient information to compute the task without referring 
back to the master computer (until return is called). Therefore, methods to parallelize deep 
neural networks so that computers can locally compute tasks is desired.  

3.1 Data Parallelism 
Data parallelism is a useful technique for training neural networks when the dataset is 

too large to fit on one computer (or training the entire dataset with one computer would take too 
long). With this method, data could be split up and sent to workers on the DCP network. This 
would allow machines to train the model locally, but only with a subset of the full data-set 
(Hegde, 2016). There are two ways to update the parameters of the master model using data 
parallelism: synchronous update and asynchronous update. 

https://web.stanford.edu/~rezab/classes/cme323/S16/projects_reports/hedge_usmani.pdf


 

3.1.1 Synchronous Update 
Synchronization in this context refers to the computation of loss-gradients. As mentioned 

earlier, evaluating the loss function of a model is assumed to be the most computationally 
expensive part of training a neural network, so it will be the main focus of research. 
Synchronous update methods wait for all loss-gradients in a data subset to be computed before 
moving on. In addition, before performing another iteration, or epoch of the dataset, all 
computers must return their tasks. This introduces a bottleneck in DCP, and unless each 
computer is benchmarked before sending it a task, this could make the program inefficient. 
Therefore, looking more into asynchronous update methods will be the focus of current 
research. 

3.1.1.1 Parallel SGD 
Proposed by Zinkevich and other researchers at Yahoo! Labs in 2010. This method of 

parallelizing stochastic gradient descent seems implementable, but due to the bottleneck of 
synchronous update methods described above, further research at this time will not take place. 

3.1.1.2 Alternating Direction Method of Multipliers SGD (ADMM) 
As described by Stephen Boyd in 2011, it proposes another method to update weights 

using SGD in a parallelized synchronous manner. The computation time of Parallel SGD and 
ADMM are the same, with complexity of per machine, where p is the size of the(p og(1/ε))O * l  
parameter, to achieve an error less than .ε   

3.1.2 Asynchronous Update 
With asynchronous methods, workers on the DCP network could locally train their subset 

of data on the full model, and when the computation is complete, return their trained model to 
the master so that the filter weights and biases can be updated. Unfortunately this is not as 
simple as just adding the returned weights to the master model. There have been multiple 
proposed methods to parallelize stochastic gradient descent in an asynchronous manner, and 
they will be explored and evaluated for use in DCP.  

3.1.2.1 Downpour SGD 
Developed by Jeffrey Dean and others at Google in 2012. As stated in the Large Scale 

Distributed Deep Networks paper by Dean: “Within this framework, we have developed the 
algorithm downpour SGD, an asynchronous stochastic gradient descent procedure supporting a 
large number of model replicas”. After evaluation (Hegde, 2016), the computation time of 
downpour SGD is seen to be similar to ADMM and Parallel SGD, proving that it is a suitable 
method for use in DCP. Further research on how to implement this method will be conducted.  

http://martin.zinkevich.org/publications/nips2010.pdf
https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
https://www.cs.toronto.edu/~ranzato/publications/DistBeliefNIPS2012_withAppendix.pdf
https://web.stanford.edu/~rezab/classes/cme323/S16/projects_reports/hedge_usmani.pdf

